Acta Crystallographica Section C **Crystal Structure** Communications

ISSN 0108-2701

Iron(III) dihydrogenphosphate(I)

Natalia V. Kuratieva* and Dmitry Yu. Naumov

Nikolaev Institute of Inorganic Chemistry, SB Russian Academy of Sciences, Akad. Lavrentiev prospekt 3, Novosibirsk 90, 630090, Russian Federation Correspondence e-mail: kuratieva@ngs.ru

Received 10 October 2005 Accepted 18 November 2005 Online 16 December 2005

The structure of rhombohedral $(R\overline{3})$ iron(III) tris[dihydrogenphosphate(I)] or iron(III) hypophosphite, Fe(H₂PO₂)₃, has been determined by single-crystal X-ray diffraction. The structure consists of [001] chains of Fe³⁺ cations in octahedral sites with $\overline{3}$ symmetry bridged by bidentate hypophosphite anions.

Comment

Previous crystal structure investigations of anhydrous salts of hypophosphoric acid include NH4H2PO2 (Zachariasen & Mooney, 1934), Ca(H₂PO₂)₂ (Goedkoop & Loopstra, 1959), CaNa(H₂PO₂)₃ (Matsuzaki & Iitaka, 1969), Zn(H₂PO₂)₂ (Weakley, 1979; Tanner et al., 1997), La(H₂PO₂)₃ (Tanner et

Figure 1

A view of the [001] chain in the structure of $Fe(H_2PO_2)_3$. Displacement ellipsoids are plotted at the 50% probability level and H atoms are drawn as small spheres of arbitrary radii.

al., 1999), Er(H₂PO₂)₃ (Aslanov et al., 1975), Ge₂(H₂PO₂)₆ (Weakley, 1983) and U(H₂PO₂)₄ (Tanner et al., 1992). It is evident that the investigation of this type of compound is incomplete, and the limited number of studies is probably a result of the difficulty of preparation and crystal growth. Our own crystallographic studies on anhydrous hypophosphites include $Cu(H_2PO_2)_2$ (Naumov et al., 2002), MH_2PO_2 (M = K, Rb and Cs; Naumova et al., 2004), LiH₂PO₂ and Be(H₂PO₂)₂ (Naumov et al., 2004) and $M(H_2PO_2)_2$ (M = Sr, Ba and Pb; Kuratieva et al., 2005).

All bivalent metal hypophosphites adopt layered structures. Rare-earth hypophosphites adopt layered structures, as in $Er(H_2PO_2)_3$ (Aslanov et al., 1975), or three-dimensional network structures, as in La(H₂PO₂)₃ (Tanner et al., 1999). In contrast, the structure of $Fe(H_2PO_2)_3$ consists of chains formed by hypophosphite anions and iron cations, the latter being coordinated by six hypophosphite O atoms forming a nearly ideal octahedral environment for both Fe³⁺ cations (Fig. 1 and Table 1). The structure is isotypic with that of the Ge^{II}/Ge^{IV} hypophosphite, in which, however, the two Ge atoms have different coordination environments (Weakley, 1983). The chains are parallel to the c axis and linked together via van der Waals interactions, with $H \cdot \cdot \cdot H$ contacts of 2.36 (3) and 2.58 (3) Å.

Experimental

Iron(III) hypophosphite was synthesized by the reaction of equimolar quantities of iron powder and 100% hypophosphoric acid in air at room temperature. A precipitate formed when about 70% of the iron powder was taken into the reaction (about 2 d). The mixture was filtered and left to stand in air. Powder formed at the bottom of the beaker and crystals appeared in the meniscus. The powder X-ray pattern of the bulk product is in good agreement with the calculated pattern. Iron(III) hypophosphite is almost insoluble in water.

Crystal	data
---------	------

В

$Fe(H_2PO_2)_3$	Mo $K\alpha$ radiation
$M_r = 250.81$	Cell parameters from 521
Trigonal, R3	reflections
a = 11.2800 (11) Å	$\theta = 3.6-28.2^{\circ}$
c = 9.6375 (11) Å	$\mu = 2.78 \text{ mm}^{-1}$
$V = 1061.97 (19) \text{ Å}^3$	T = 293 (2) K
Z = 6	Prism, colourless
$D_x = 2.353 \text{ Mg m}^{-3}$	$0.08\times0.04\times0.02$ mm

Data collection

Bruker–Nonius X8 APEX CCD	430 independent reflections
area-detector diffractometer	361 reflections with $I > 2\sigma(I)$
φ scans	$R_{\rm int} = 0.034$
Absorption correction: multi-scan	$\theta_{\rm max} = 25.3^{\circ}$
(SADABS; Bruker, 2004)	$h = -13 \rightarrow 7$
$T_{\min} = 0.808, \ T_{\max} = 0.947$	$k = -5 \rightarrow 13$
1147 measured reflections	$l = -11 \rightarrow 11$

Refinement

Refinement on F^2	All H-atom parameters refined
$R[F^2 > 2\sigma(F^2)] = 0.030$	$w = 1/[\sigma^2 (F_0^2) + (0.0377P)^2]$
$wR(F^2) = 0.073$	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
S = 1.03	$(\Delta/\sigma)_{\rm max} < 0.001$
430 reflections	$\Delta \rho_{\rm max} = 0.46 \text{ e} \text{ Å}^{-3}$
40 parameters	$\Delta \rho_{\rm min} = -0.39 \text{ e} \text{ Å}^{-3}$

H atoms were refined in isotropic approximation with restrained P-H distances of 1.39 (2) Å.

inorganic compounds

Table 1Selected geometric parameters (Å, °).					
Fe1-O1	2.000 (2)	P1-O2	1		
E_{e^2} O ²	2 003 (2)	P1 H1	1		

Fe2-O2	2.003 (2)	P1-H1	1.38 (4)
P1-O1	1.506 (2)	P1-H2	1.38 (4)
$\begin{array}{c} O1 - Fe1 - O1^{i} \\ O1 - P1 - O2 \end{array}$	91.17 (9) 116.25 (15)	H1-P1-H2	108 (2)

Symmetry code: (i) -y, x - y, z.

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Bruker, 2004); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL* and *BS* (Ozawa & Kang, 2004); software used to prepare material for publication: *SHELXTL*.

The authors are grateful to Professor Sergey F. Solodovnikov for helpful comments.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BC1084). Services for accessing these data are described at the back of the journal.

References

.509 (2)

- Aslanov, L. A., Ionov, V. M., Poray-Koshits, M. A., Lebedev, V. G., Kulikovskij, B. N., Gilyarov, O. N. & Novoderzhkina, T. L. (1975). *Neorg. Mater.* 11, 117– 119.
- Bruker (2004). APEX2 (Version 1.08), SAINT (Version 7.03), SADABS (Version 2.11) and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.
- Goedkoop, J. A. & Loopstra, L. H. (1959). Ned. Tijdschr. Natuurkd, 25, 29–41.
- Kuratieva, N. V., Naumova, M. I., Podberezskaya, N. V. & Naumov, D. Yu. (2005). Acta Cryst. C61, i14–i16.
- Matsuzaki, T. & Iitaka, Y. (1969). Acta Cryst. B25, 1932-1938.
- Naumov, D. Y., Naumova, M. I., Kuratieva, N. V., Boldyreva, E. V. & Howard, J. A. K. (2002). *Acta Cryst.* C58, i55–i60.
- Naumov, D. Y., Naumova, M. I., Podberezskaya, N. V. & Kuratieva, N. V. (2004). Acta Cryst. C60, i73-i75.
- Naumova, M. I., Kuratieva, N. V., Podberezskaya, N. V. & Naumov, D. Y. (2004). Acta Cryst. C60, i53–i55.
- Ozawa, T. C. & Kang, S. J. (2004). J. Appl. Cryst. 37, 679.
- Tanner, P. A., Faucher, M. D. & Mak, T. C. W. (1999). Inorg. Chem. 38, 6008– 6023.
- Tanner, P. A., Sze, T. H., Mak, T. C. W. & Yip, W. H. (1992). J. Crystallogr. Spectrosc. Res. 22, 25–30.
- Tanner, P. A., Yu-Long, L. & Mak, T. C. W. (1997). Polyhedron, 16, 495– 505.
- Weakley, T. J. R. (1979). Acta Cryst. B35, 42-45.
- Weakley, T. J. R. (1983). J. Chem. Soc. Pak. 5, 279-281.
- Zachariasen, W. H. & Mooney, R. C. L. (1934). J. Chem. Phys. 2, 34-37.